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Abstract Deficiencies of constitutive models in prediction
of dilatancy are often attributed to simplifications associated
with flow rules such as assumptions of isotropy and coax-
iality. It is thus proposed here to develop a comprehensive
flow rule for granular materials by including the effect of
fabric and without the assumption of coaxiality. A second-
order tensor is introduced as a fabric for the distribution of
contact normals and contact forces. By using the energy prin-
ciple in micro-mechanical scale and a suitable dissipation
mechanism in granular materials, a stress-dilatancy relation
is obtained. Fabric plays a “bridge-like” role in the dilatancy
and non-coaxiality. Non-coaxialities between stress-strain-
fabric are attributed to the non-coaxiality between stress-
fabric and strain-fabric. In this formulation the constants
for modeling fabric depend on non-coaxiality of the system
rather than the history that determines such a state. Ability of
this stress-fabric-dilatancy for modeling the non-coaxiality
shows that this relation can predict the behavior of granular
materials in the presence of the rotation of principal stress
axes.
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1 Introduction

Prediction of dilatancy of granular materials still poses a chal-
lenge issue in constitutive modeling. Stress-dilatancy theo-
ries have been established originally based on energy princi-
ples [3,11–14,31,43,48,56,57]. Determination of the stress-
strain and failure behavior of the cohesionless soils are quite
complex due to their granular structure [55]. By defining
a homogenization technique from local phenomena to the
global behavior, this complex behavior can be clarified. Some
of the stress-dilatancy relations have been developed based
on the constraint imposed on the micromechanical behav-
ior of grains [9,24,28,53]. However, the energy principle
has been used as dissipation function in different micro- and
macro scales and thus various dilatancy relations have been
proposed.

Two issues of importance in modeling of granular materi-
als are associated with the internal microstructure (or fab-
ric) and non-coaxialities between stress, strain and fabric
[6,21,56–58]. Micromechanical analysis has been shown to
be a viable approach to develop the effect of fabric and its
evolution [58]. In the realm of micromechanical formulations
there are two main approaches, one is fabric embedded plas-
ticity models and the other is purely micromechanical models
[58]. In the former, a fabric tensor is assumed to characterize
the mechanical properties of granular materials. Hence, in
macroscopic plasticity models dilatancy is included through
the flow rule. The microstructural dependency of dilatancy
is derived from micromechanical considerations, but with
different rules hypothesized. By assuming different mecha-
nisms for the evolution of fabric or contact arrangement with
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shearing deformation, different flow rules will be obtained
[6,21,56].

For purely micromechanical models the approach pro-
vides a physical insight to treat granular particles at the
local force (static) versus displacement (kinematic). Whereas
in the approach that utilizes homogenization techniques,
both micro-level kinematic and static variables are be linked
to their macro-level counterparts, i.e., stress, strain and
microstructure arrangement (or fabric) of the granular assem-
bly. In order to characterize the microscopic parameters,
some phenomenological rules must be hypothesized. Chang
[4] and Nemat-Nasser [29] used this approach in their
formulations. In order to combine the non-coaxiality and
fabric anisotropy Nemat-Nasser [29] and Nemat-Nasser
and Zhang [30] included fabric in the dilatancy equa-
tion. In micro-level analysis, they attributed the shearing
resistance to the Coulomb type friction and the fabric
anisotropy.

In the literature of constitutive modeling the effect of fab-
ric and non-coaxiality between stress and fabric accounted
for into the calculation of dilatancy by considering it as a
constraint imposed by internal grain geometry on macro-
level deformation [6,9,21,22,24,56,57,62]. By definition of
microstructural arrangement of particles, stress and strain
must be related through the particles contacts. Thus, the
non-coaxiality between the stress and the strain has to be
established via the fabric anisotropy. In other words, non-
coaxiality must be defined between stress and fabric and
strain and fabric.

In this paper a physically based dilatancy relation is pro-
posed without the hypothesis of coaxiality and by linking
discrete micromechanics and continuum mechanics. For this
purpose, initially a micro-analysis is carried out on the con-
tact normal and contact normal forces distribution function
by accounting the effect of fabric on the mean behavior of
particles through a simple local contact law. Then the laws
of thermodynamics are utilized to derive the internal sup-
plied and dissipated energies. In contrast to previous works
where the non-coaxiality has been attributed to the stress and
strain increment (e.g., [10,11,40,61]) or to the stress and
fabric [21,41,56,57], the microstructural parameters of the
proposed flow are explicitly related to the deviatoric load
with respect to non-coaxiality between stress-strain-fabric.
Furthermore, the constants used in the description of the
fabric and its evolution depend only on the non-coaxiality
between stress and fabric irrespective of bedding angles or
confining pressures. Whereas in other models the constants
are based on the history of deformation. Non-coaxialities
between stress, strain and fabric will be discussed, veri-
fied and compared with other flow rules in geomechan-
ics.

2 Direction of contact normals and contact force
distributions

Rothenburg and Bathurst [46,47] proposed equations for
contact normal and contact force distributions and attributed
the strength of granular materials to these parameters. Parti-
cles are packed in two cases: isotropic and anisotropic. In the
isotropic case particles are in regular form and equal con-
tacts. The contact normals are distributed uniformly in the
whole assembly. After shearing the contact normals and con-
sequently the contact normal forces change in a continuous
manner [24,35,46]. Shearing deformations lead to anisotropy
in the contact normal forces because the number of load car-
rying contacts and their distributions change. In the shear-
ing process, anisotropy is developed with the disruption and
generation of new contacts [24,25,37,38]. Kruyt [16] quan-
tify the fabric evolution by considering three mechanisms:
contact generation, contact disruption, and contact reorien-
tation. It was found that the contact disruption is the dominant
mechanism [16]. The dissipation of energy inside the media
is attributed to these mechanisms [15,49]. The changes of
these mechanisms and their dissipations should be included
in the derivation of the energy method which is used to obtain
stress-fabric-dilatancy equation.

The energy method is a basic approach to formulate
dilatancy in granular geomaterials (e.g., [5,28,44,48]). In
the energy methods two functions have to be defined, i.e.
applied (external) energy and dissipated energy. Wan and
Guo [56,57] used macro-level approach to obtain the applied
energy, but micro-level analysis to obtain the dissipation
function. Nemat-Nasser [28,29] used a micro-level analysis
for the applied loads and considered the dissipation func-
tion as proposed by Roscoe [45]. However, it is reasonable
to obtain functions for both the applied and the dissipated
energy mechanism in a same level.

3 Total work input

In order to determine the total work input in microscopic
level the mean field theory is employed. Applied or external
energy may be related to the microstructure of the granular
materials. Based on the relation proposed by Emeiault and
Cambou [7], the applied energy function may be defined as
follows:

σi j · εi j =
∮

E(θ) fi d j d� (1)

where σi j is the Cauchy stress, εi j its counterpart strain, fi

is the internal force, d j is relative displacements of contact
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Fig. 1 Contact normal and contact forces in the kinematics of uniform deformation

points and E(θ) is the distribution function of the contacts.
In the above equation the balance between applied or macro-
scopic work and the integral of the microscopic work overall
contact direction is established. To develop Eq. (1) a func-
tion is necessary to describe the distribution of the contact
normals, the contact forces and their counterpart displace-
ments in the micro-level. However, these variables are very
complex [7] and for this reason as a first approximation it
is proposed to consider the mean values of the variables for
each contact orientation. By using the Fourier series and the
distinct element method (DEM), Rothenburg and Bathurst
[46,47] showed that for the circular and elliptical granular
assemblies can be defined by:

E(θ) = (1/2π)(1 + α cos 2(θ − θ f )) (2)

where α is the magnitude of the anisotropy and θ f is the
major direction of the contact normals with respect to the
major principal stress. In order to analyze the micro-level
origin of the shear strength a statistical description of the
force transmission and its distribution are needed. Rothen-
burg and Bathurst [47] and Radjai and Azema [42] proposed
harmonic approximations for the internal forces density dis-
tribution functions such as:

fn(θ) = 〈 f◦〉 [1 + αn cos 2(θ − θn)] (3)

ft (θ) = 〈 f◦〉αt sin 2(θ − θt ) (4)

f◦ is the mean radial force, αn and αt are the anisotropies
of the radial and tangential forces respectively, θn and θt are
the directions of the radial and tangential forces with respect
to the principal stress axis. Deformation in the microscopic
level can be related to the macroscopic deformations via the
following equations [47]:

(dn/δ) = (ε̇v + ε̇q cos 2(θ − θε))/2 (5)

(dt/δ) = −(ε̇q sin 2(θ − θε))/2 (6)

where ε̇v and ε̇q are the volumetric and deviatoric strains,
respectively, θε is the direction of the major principal strain

with respect to the horizontal axis; dn and dt are the defor-
mations in the radial and tangential direction, respectively,
as shown in Fig. 1 and δ stands for the increment of defor-
mation. The balanced applied energy in the micro-level is
obtained by substituting Eqs. (2)–(6) in Eq. (1) such that:∮

E(θ) fi d j d� =
∫ 2π

0
[( fn(θ).ḋn)+ ( ft (θ).ḋt )]E(θ)dθ

=
∫ 2π

0
fn(θ).dn E(θ)dθ +

∫ 2π

0
ft (θ).dt E(θ)dθ

=
∫ 2π

0
f◦(1 + αn cos 2(θ − θn))(ε̇v + ε̇q cos 2(θ

− θε))(1/2π)(1 + α cos 2(θ − θ f ))dθ

+
∫ 2π

0
f◦(αt sin 2(θ − θε))(ε̇q sin 2(θ

− θε))(1/2π)(1 + α cos 2(θ − θ f ))dθ (7)

After integrating and mathematical manipulation the follow-
ing equation is obtained:∮

fi d j =
(

f◦
4

)
[(1 + ααn cos 2(θn − θ f ))ε̇v

+ (1/2)((α cos 2(θ f − θε)+ αn cos 2(θn − θε)

+ αt cos 2(θ f − θε))ε̇q ] (8)

Neglecting the effect of ααn , and for the non-coaxiality
between the major principal direction of the stress tensor and
the major principal direction of the different components of
the fabric tensors, and also by neglecting the cross products
among the anisotropies Radjai et al. [41] proposed the fol-
lowing equations:

(q/p◦) ∼= (1/2)[α cos 2(θσ − θ f )

+ αn cos 2(θσ − θn)+ αt cos 2(θσ − θt )] (9)

where θσ is the direction of the principal stress tensor. Com-
bining Eqs. (8) and (9) to obtain the applied energy in the
presence of the non-coaxialities between stress-strain-fabric,
thus
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∮
fi d j d� = ( f◦/4){[(1 + ααn cos 2(θn − θ f ))]ε̇v

+ (1/2)[(α cos 2(θσ − θ f ) cos 2(θ f − θε))

+ αn cos 2(θσ − θn) cos 2(θn − θσ )

+ αt cos 2(θσ − θt ) cos 2(θ f − θε)]ε̇q} (10)

In the above equation non-coaxialities in the total work input
are established between stress-fabric and strain-fabric.

4 Dissipation function

External loads and applied energy are dissipated by the fric-
tion between particles and the displacement and/or the rota-
tion of them. Different mechanisms to dissipate energy have
been taken into account by different researchers. In macro-
level, Roscoe et al. [43], Roscoe [45] and Nemat-Nasser [29]
attributed dissipation to the friction sliding of the granular
particles. Roscoe et al. [43] showed that the rate of dissipa-
tion in the failure is q ε̇q , where q is the deviatoric stress. They
also found that the pre-failure rate of dissipation is equal to
q ε̇q , and at failure q = Mp◦, hence the rate of dissipation,
˙̄ψ is equal to:

˙̄ψ = p◦M ε̇q (11)

Nemat-Nasser [29] and Nemat-Nasser and Zhu [30] used this
rate of dissipation in their formulations. Nova and Muir Wood
[33] and later Jefferries [14] found that the rate of dissipation
has another term, i.e.:

˙̄ψ = p◦M ε̇q + p◦N ε̇v (12)

where N is an amount of the volumetric work associated with
the stress-dilatancy. Nova [32] considered N as a density-
independent material property.

For the first order rate of dissipation of energy and by con-
sidering pure stress rotation Vardoulakis and Georgopoulos
[54] used the following equation for the non-coaxiality case
between stress and strain:

˙̄ψ = q ε̇q cos δ + p◦ε̇v (13)

where cos δ is similar to the non-coaxiality parameter that
was proposed by Gutierrez and Ishihara [12]. After some sim-
plification due to the coaxial and non-coaxial part of Eq. (13),
they proposed the following equation:

˙̄ψ = pε̇q fc (14)

where fc is a constant parameter which depends on the type
of the sand, (e.g., fc � 0.48 for the Toyoura sand) [12]. The
effect of fabric was not directly included in the dissipation
mechanism by the above constitutive models.

The effect of fabric in the dissipation mechanism must be
included in the micro-level via the number of disruption and
generation of contacts and contact normal surfaces. Kruyt
and Rothenburg [15] suggested that the different dissipa-
tion mechanism in the microscopic level must be investigated
and then linked it to the macroscopic dissipative character-
istics. For this reason, confining pressure and fabric must be
included in the dissipation mechanism. Wolf et al. [60] intro-
duced two types of irreversible interaction: (1) energy dis-
sipation due to incomplete normal restitution (which means
relative velocities after and before the collision of particles)
in head on collision, (2) energy dissipation during sliding of
the granular materials based on Coulomb friction law.

Kruyt and Rothenburg [15] by using DEM added two para-
meters to account for numerical dissipation. Wang and Zhu
[59] attributed dissipation to two phenomena, i.e. the frag-
ile dissipation and the rheological dissipation. Wan and Guo
[55,56] were first to explicitly incorporate the fabric and its
evolution in the constitutive modeling of granular materials.
By assuming that energy dissipation is purely frictional, they
included only the tangential terms in their formulations. They
showed that the rate of energy dissipation per contact point,
˙̄ψ is:

˙̄ψ = Nḋ + Ṅd (15)

where N is the number of contacts and d is the dissipation
per contact. The dot over d and N imply that the derivative
and changes of the parameters with shearing. In the granular
assembly, the velocity jump has only a shear component [39],
for this reason the rate of energy dissipation per contact based
on the Coulomb friction equals to:

ḋ = 〈 ft 〉 · 〈
u̇t 〉 (16)

where 〈·〉 stands for the volume average taken over volume
mass. For the first part of the dissipation mechanism, the rate
of frictional energy is:

Nḋ = N · 〈 ft 〉 · 〈
u̇t 〉 (17)

Sliding in the granular materials follow the Coulomb’s law:

〈 ft 〉 = μ(x) · 〈 fn〉 (18)

whereμ(x) is the kinematic friction coefficient. Radial force
is a function of the confining pressure [39]

〈 fn〉 = φ(x) · p◦ (19)

where p◦ is the confining pressure. By substituting Eq. (18)
and (19) in Eq. (17), the following is obtained:

Nḋ = N · μ(x) · φ(x) · p◦ · 〈
u̇t 〉 (20)

123



A flow rule incorporating the fabric and non-coaxiality 679

whereφ(x) is a scalar function which strongly depends on the
microstructures (fabric, density,…) of the granular medium
and the loading conditions. Tangential deformation in the
micro-level may be related to the deviatoric (shear) defor-
mation in the macro-level. Applying this assumption to the
first part of the dissipation mechanism:

Nḋ = N · μ(x) · φ(x) · p◦ · ε̇q (21)

Since the total number of contacts per unit volume does
not change at critical state [22,62] and also the real stress
approaches a constant value as reflected by the inter-particle
friction, it must be related to the stress ratio at critical state.
The amount of N μ(x)φ(x) is a function of fabric, density
and frictional sliding (frictional failure) of the medium (e.g.,
[56,57]), thus

N · μ(x) · φ(x) = f (ψ,M, Fi j ) (22)

where M is the stress ratio at critical state. By assuming
that soil is a distortional material, the current size of the
yield surface depends on the plastic distortional strain ε p

q

[27]. Moreover, the effect of fabric is more pronounced in
the first steps of shearing with increasing of distortional shear
deformation [34,36]. Combining the relations proposed by
Li and Dafalias [20,21] and Wan and Guo [55,56] results in:

N · μ(x) · φ(x)
= [(1 + (1/2)α cos 2(θσ − θ f )) cos 2(βi − β◦)]X + ε

p
q

c + ε
p
q

× M exp(ndψ) (23)

By substituting Eq. (23) into Eq. (21) we obtain

Nḋ

= [(1 + (1/2)α cos 2(θσ − θ f )) cos 2(βi − β◦)]X + ε
p
q

c + ε
p
q

× M exp(ndψ)p◦ε̇q (24)

where X is a parameter that depends on the confining pres-
sure,ψ is a state parameter, and c is a material constant. This
parameter is directly related to the confining pressure; hence
the term exp(ndψ) can be neglected.

The second term in the dissipation function [Eq. (15)] is
directly due to the changes of fabric. Ṅ is the change of
contacts and one of the main source of anisotropy in the
granular mass which evolves with the deformation. Lanier
and Calvetti [18] showed that:

Ṅ (θ,
θ) = N (θ,
θ)b′ni n j
εi j (25)

where Ṅ (θ,
θ) is the changes of the distribution of the
contact normals, b′ imply the hardening function of the
materials,
εi j is the increment of strain, and ni and n j are the

directions of the contact normals with respect to the orthog-
onal coordination, X and Y, respectively. Because of the dis-
tortional hardening characteristics of the granular geomate-
rials, b′ may be a function of the plastic shear strain. Disrup-
tion and generation of the contacts is the result of shearing
and cause the anisotropy of the contact normals and contact
forces. Most of the contacts are lost in the tensile direction
and generated in the compressive direction [8,25].

Rolling and sliding are the main factors in the deforma-
tion and the dissipation of energies in the granular materi-
als [2,37]. Although sliding contacts are more than rolling
contacts, sliding contacts dissipate much more energy than
rolling contacts, and occurs in the weak network forces
[2,42]. Therefore, sliding of contacts is important factor
in the dissipation of energy. Dissipated energy due to the
changes of the contacts may be developed in the following
manner (the effect of opening/closing is not included). Incre-
ment of the strain in Eq. (25) can be shown by the increments
of the volumetric and deviatoric strains, as follows [18]:

Ṅ (θ,
θ) = N (θ,
θ)b′ni n j
εi j

= b′ni n j N (θ,
θ)(ε̇v + ε̇q cos 2(θ − θε)) (26)

By substituting Eq. (26) into Eq. (25) we will have:

Ṅd =
∫ 2π

0
b′ni n j N (θ,
θ)(ε̇v + ε̇q cos 2(θ − θε))

( f◦(1 + αn cos 2(θ − θε)))( f◦αt sin 2(θ − θt ))dθ (27)

After integrating, the following equation is obtained:

Ṅd = F(Fi j , ε
p
q ) f◦ε̇v[1 + ααn cos 2(θn − θ f )] (28)

The dissipation function is finally obtained by combining
Eqs. (24) and (28)

˙̄ψ = (1 + (1/2)α cos 2(θσ − θ f )) cos 2(βi − β◦)X + ε
p
q

C + ε
p
q

× M exp(ndψ)p◦ε̇q

+ F(Fi j , ε
p
q ) f◦[1 + ααn cos 2(θn − θ f )]ε̇v (29)

As suggested by Kruyt and Rothenburg [15], the above equa-
tion links the dissipative mechanism in the micro-level to the
macro-level dissipative characteristics. For granular geoma-
terials such as sand, the elastic energy is negligible and con-
sequently all the applied energy by the internal force is dissi-
pated. Here too it is assumed that the effect of elastic stored
energy is negligible and all the work done by the internal
forces is dissipated (e.g., [12,14,15,53]), thus

∮
E(θ) fi d j d� = ˙̄ψ (30)

Hence,

( f◦/4){[(1 + ααn cos 2(θn − θ f ))]ε̇v
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+ (1/2)[(α cos 2(θσ − θ f ) cos 2(θ f − θε))

+αn cos 2(θσ − θn) cos 2(θn − θσ )

+αt cos 2(θσ − θt ) cos 2(θ f − θε)]ε̇q}
= (1 + (1/2)α cos 2(θσ − θ f )) cos 2(βi − β◦)X + ε

p
q

C + ε
p
q

× M exp(ndψ)p◦ε̇q

+ F(Fi j , ε
p
q ) f◦[1 + ααn cos 2(θn − θ f )]ε̇v (31)

Dividing both sides of the above equation by p◦ε̇q or its
equivalent in the micro-level p◦ = f◦(1+ααn cos 2(θn−θ f ))

[47] and rearrangement gives:

ε̇v

ε̇q
=

(1+(1/2)α cos 2(θσ−θ f )) cos 2(βi −β◦)X+ε p
q

C+ε p
q

M exp(ndψ)− ncσ− f ncε− f η

1 − F(Fi j , ε
p
q )

(32)

in the above equation:

ncσ− f ncε− f η

= (1
/

2)
(α cos 2(θσ − θ f ) cos 2(θε − θ f )+ αn cos 2(θσ − θ f ) cos 2(θε − θ f )+ αt cos 2(θσ − θ f ) cos 2(θε − θ f ))

1 + ααn cos 2(θn − θ f )

(33)

Equation (32) can be shown as:

d̄ = 1

1 − F(Fi j , ε
p
q )
(G ′Md − ncσ− f ncε− f η) (34)

where d̄ is dilatancy, ncσ− f is the non-coaxiality between
stress and fabric, ncε− f is the non-coaxiality between strain
and fabric, F(Fi j , ε

p
q ) is the state of fabric evolution, and G ′

is a function expressed by the following equation:

G ′ = (1 + (1/2)α cos 2(θσ − θ f )) cos 2(βi − β◦)X + ε
p
q

C + ε
p
q

(35)

Equation (33) shows that the non-coaxiality between the
major principal direction of the stress (θσ ) and the major
principal direction of the strain (θε) are related via the fab-
ric θ f . In other words, fabric acts like a “bridge” between
these two separate parts. The F function in the denomina-
tor of Eq. (32), as mentioned before, is a function of fabric
which can be shown by the magnitude of anisotropyα and the
major direction of fabric θ f . Baker and Desai [1] proposed
an equation for the intensity of anisotropy, T as:

T = 3(Aε p
q )

1 + (Aε p
q )

(36)

They described the importance of A and its effect either as
a constant or as a function of the plastic shear strain. Here,
by considering Eqs. (36) and (2) and that the yield surface
and the plastic potential intersect in the yielding point, the
following equation is suggested:

F(Fi j , ε
p
q ) = 2(εq

/
εq max)(0.5)

(
2 − (0.5α cos 2(θσ − θ f ))

4 + (0.5α cos 2(θσ − θ f ))

)

(37)

where εq max is the shear strain corresponding to the maxi-
mum shear stress. Since the magnitude of anisotropy α and

the non-coaxiality approach constant values [16,17], Eq. (32)
tends to a constant value in the critical state [22,62]. Evolu-
tion of the anisotropic parameters such as α and θ f have an
important effect on the dilatancy regime. Direct calculation
of the fabric parameters is presented in the following section.

5 Fabric evolution

The parameters α and θ f show the status of the fabric and
its evolution. These parameters have a great influence on the
behavior of the dilatancy equation. Taha and Shaverdi [52]
proposed an equation which can predict the magnitude of α
and θ f in the presence of the non-coaxiality. This equation
is obtained from the micro-level analysis. To calculate the α
parameter, the magnitude of the shear to normal stress ratio
on the spatial mobilized plane (SMP) must be determined.
In the triaxial case, for example, τ/p may be obtained from
the following equation [26]:

τ
/

p = √
σ1/σ3 − √

σ3/σ1 (38)

The parameters α and θ f may be obtained from the following
equations in the presence of non-coaxiality [52]:

α = (τ
/

p) cosφμmob−sin φμmob

sin(2θ f +φμmob)− ((τ
/

p) cos(2θ f +φμmob))
(39)
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θ̇ f = θ̇σ + (1/2) · dη · (θσ − θ f ) (40)

where the dot over θ shows the variation. The most important
parameter in the above equation is the inter-particle mobi-
lized friction angle, φμmob. This parameter is obtained from
the following equation:

tan−1
(
τ

p

)
= θσ − θ f

z
+ λ

(
ε̇v

ε̇q

)
+ φμmob (41)

where z and λ are material constants. These constants depend
on the non-coaxiality between stress and fabric. z and λ are
the constants used for the mobilization of the inter-paricle
friction angle in the presence of anisotropy. Kuhn [17] and
Shaverdi et al. [50] showed that the variation of α with the
shear strain is similar to the variation of shear to normal stress
ratio with shear strain.

6 Discussion

The non-coaxialities between stress-fabric and strain-fabric
are established in Eq. (32). In this equation fabric acts as
a bridge-like role to link the stress tensor to the strain ten-
sor. Jefferies [14] dilatancy formulation can be obtained by
assuming the function F(Fi j , ε

p
q ) in the denominator to be

constant (N ′), and by neglecting the effect of fabric and state
parameter on the critical stress ratio M and also neglecting
the non-coaxialities:

d̄ = (M − η)

1 − N ′ (42)

If the fabric and non-coaxiality between stress and fabric are
only taken into account, the Dafalias and Manzari [6] flow
rule will be obtained:

d̄ = Ad(M
d − η) (43)

If the fabric anisotropy is not taken into account and the coax-
iality exists between strain and fabric, then Eq. (32) becomes
equal to the Gutierrez et al. [10] flow rule:

d̄ = M − nσ−εη (44)

Following the above discussion, it may be noted that the
presented flow rule [Eq. (32)] is inclusive of all previously
proposed equations and thus more comprehensive.

7 Verification with experimental tests

The initial density, fabric, and non-coaxiality are the main
factors that affect the dilatancy in granular geomaterials. The
effect of initial density is included in the constitutive equa-
tions and has been verified with the experimental tests, espe-
cially for the dilatancy equation by Manzari and Dafalias
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Fig. 2 Bucket used for deposition of the sands with a tilting angle δ
(after Oda et al. [35])
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Fig. 3 Initial distribution of the contact normals for all samples with
respect to their deposition angles

[23], Li and Dafalias [21]. Non-coaxiality and its effect, has
also been incorporated and verified with experimental tests
by Gutierrez and Ishihara [11,12], Yu [61], and Lashkari and
Latifi [19]. Fabric and its evolution were incorporated in the
dilatancy equation by Wan and Guo [56,57]. In this paper, the
effect of initial anisotropy and its evolution is incorporated
and verified with the experimental tests.

Oda et al. [35] conducted some triaxial tests on fine Toy-
oura sand (D50 = 0.18 mm, cu = 1.5). Maximum and min-
imum void ratios were 0.99 and 0.63, respectively. They
used strong particles to ensure minimal particle crushing.
The specimens were sunk into a bucket filled with water and
inclined at a tilting angle δ (Fig. 2). The sand was tapped suffi-
ciently to provide specimens having a void ratio of about 0.67
to 0.68. Specimens were sheared in different tilting angles
δ = 0◦, 30◦, 60◦ and 90◦ in triaxial compression tests. The
microscopic examination in the vertical sections show that
the apparent long axes of the particles were aligned parallel
to the bedding angle, as shown in Fig. 3.
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Fig. 4 Variation of initial anisotropy in the shearing process for p◦ =
0.5 kg/cm2 and different bedding angles

Fig. 5 Variation of initial anisotropy in the shearing process for p◦ =
2.0 kg/cm2 with different bedding angles

Assessment of constants in shearing process and their evo-
lution is an important part of the simulation. The constants
for modeling the dilatancy, fabric and its evolution can be
divided into two categories, The first category includes z
and λ; which depend on the non-coaxiality between stress
and fabric. The other category includes cos 2(βi − β0), c
and x . These are obtained from shear strength data set (see
“Appendix”). The effect of inherent (or initial) anisotropy
and induced anisotropy were included in the dilatancy for-
mulation via cos 2(βi − β◦), α and θ f , respectively. The
constants for inherent parameter have already been obtained
from the shear strength data set. In order to model fabric
and its evolution φμmob has a dominant effect. In Eq. (41)
ε̇v or dilatancy is not a dominant factor for calculation of
φμmob, therefor it is ignored for the first round of calcu-
lation. In the shearing process the contact normals change
their direction with respect to maximum compression. For
different bedding angles, the contact normals have differ-
ent non-coaxiality (or deviation between stress and fabric),

Table 1 Constantans that are used for the simulations

M 1.25

c 0.008

x

{
p◦ = 0.5 kg/cm2

p◦ = 2.0 kg/cm2 0.952

0.80

nd 0

Table 2 Constants used for the evolution of fabric

Non-coaxiality z λ

θ f − θσ > 60 6.29 10

33 < θ f − θσ < 60 4.2 10

30 < θ f − θσ < 33 3.8 10

23 < θ f − θσ < 30 4.2 10

21 < θ f − θσ < 23 5.7 10

13 < θ f − θσ < 21 2.3 10

11 < θ f − θσ < 13 17 10

θ f − θσ < 11 3 10

the non-coaxiality decreases with increasing of shear strain.
For all samples with different bedding angles in the shear-
ing process their contact normals changes but the constants
depend on the magnitude of non-coaxiality; i.e. a sample
could have varying magnitude of non-coaxiality from the
beginning to failure. In spite of different bedding angles at
the beginning of shearing, all samples have a certain mag-
nitude of the constants at a specific range of non-coaxiality.
The classical constants and the additional constants for non-
coaxiality are the same for simulation. For this reason we
used one set of constant for all samples with different bed-
ding angles and different confining pressures during shearing
process.

The parameters α and θ f are obtained from Eqs. (39) and
(38) respectively. The specimens with different tilting angles
were sheared at the cell pressures of 0.5 and 2.0 kg/cm2.
The variation of the initial anisotropy (or initial real devi-
ation angle) in the process of shearing for the different
tilting angle and cell pressures are shown in Figs. 4 and
5. The magnitude of cos 2(βi − β◦) is obtained by back
calculation. The constants used to model the dilatancy are
M, nd , cos 2(βi − β◦), z, and x that are presented in the
Tables 1 and 2. The constant M is a classic parameter and
easily obtained from experimental data [or from literature
for Toyoura sand, (e.g., [20,21])]. Here, the effect of confin-
ing pressure was included via the parameter x , hence in this
simulation the parameter nd has been neglected.

In Figs. 6 and 7 the dilatancy obtained by Eq. (32) were
compared with the experimental tests by Oda et al. [36].
The effects of inherent and induced anisotropy have been
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Fig. 6 Comparison between experimental data and the proposed dilatancy Eq. (32) for the confining pressure 0.5 kg/cm2

Fig. 7 Comparison between experimental data and the proposed dilatancy Eq. (32) for the confining pressure 2.0 kg/cm2

included in these simulations. By increasing the tilting angle
δ, the magnitude of the parameter α increases with increasing
plastic shear deformation, and at the same time, the magni-
tude of θ f decreases. The difference is due to the variation of
the anisotropy parameters (α, θ f and cos 2(βi − β◦)), since
at the beginning of shearing the variation of the void ratio
in different samples is not a dominant factor. The variation
of the function F(Fi j , ε

p
q ) in the denominator of Eq. (32) is

located in the range of the variation of N presented by Jef-
feries [13]. It is obvious that applying these equations with
one set of constants can sufficiently model dilatancy in gran-
ular material.

8 Conclusion

Using micro-level analysis and the principles of thermo-
dynamics a comprehensive flow rule has been proposed
in which the effect of inherent and induced anisotropy is
included. The internal work done by the internal forces and
their counterparts strain has been related to the actual applied
external loads. The dissipation mechanism in the granular
materials was related to the macro-level dissipation mech-
anism. The applied and dissipation functions defining the
contact normals distribution and the internal forces have
been adapted from Rothenburg and Bathurst [47] and Rad-

123



684 H. Shaverdi et al.

jai and Azema [42]. The variation of the contact normals or
induced anisotropy was related to the variation of the degree
of anisotropy α and the direction of the deposition angle of
the particles mobilized inside the media, cos 2βi . The para-
meter cos 2(βi − β◦) was applied to show the symbolic lim-
ited variation of the initial anisotropy. It was shown that fab-
ric plays a “bridge-like” role in the non-coaxial flow rule.
Non-coaxialties between stress-strain-fabric were attributed
to the non-coaxiality between stress-fabric and strain-fabric.
Unlike many other flow rules, in this new formulation the
constants are depend on the non-coaxiality between stress
and fabric. Verification of the formulation was carried out
by simulation of experimental tests conducted by Oda et al.
[36].

Appendix

Constants for fabric evolution

Assuming a symmetric second-rank tensor for the distribu-
tion of the contact normals (peanut shaped function E(θ) =
(1/2π)(1+α cos 2(θ−θ f ))) and by focusing on two particle
across a potential sliding plane, the following equations are
obtained:

α = (τ
/

p) cosφμmob − sin φμmob

sin(2θ f + φμmob)− ((τ
/

p) cos(2θ f + φμmob))

(45)

tan−1
(
τ

p

)
= θσ − θ f

z
+ λ

(
ε̇v

ε̇q

)
+ φμmob (46)

where z and λ are constants and irrespective to their bedding
angles or confining pressures their magnitude depend only
on the non-coaxiality between stress and fabric.

Constants for shear strength

Shaverdi et al. [50,51] proposed a new formulation for mod-
eling of the yield surface (extended form of Mohr–Coulomb
yield surface) in the triaxial case as follows:

f = q − η
f
y p0 (47)

and

η
f
y = ε

p
q

c + ε
p
q
(1 + (1/2)α cos 2(θ f − θσ ))

× cos 2(βi − β◦)M exp(−nbψ) (48)

c and cos 2(βi −β0) are the material constants. The constant
cos 2(βi − β0) may readily be obtained by back calculation
but as a rough estimation its value is close to the magnitude
of the bedding angle cos δ (for bedding angle δ between 15◦

to 45◦). c is a constant that is used for modeling parabolic
shape of the stress-strain behavior of soil. It is a soil constant
which essentially scales the plastic strain since Eqs. (47, 48)
are functions of ε p

q /c.
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